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Arylhalocarbenes (ArCX), photochemically generated from aryl-
halodiazirines (1), have been central to absolute kinetics studies of
carbene—alkene addition reactions." Ultrafast laser flash photolysis
(LFP) of 1 (X = F, Cl, Br) in acetonitrile (ACN) or cyclohexane
(CHX) gave transients with A,,x &~ 600—700 nm and ps lifetimes
that were assigned to excited state arylhalodiazirine precursors of
ArCX.? Due to the dependence of the excited state lifetimes on
solvent polarity and the electron-donating capacity of X, the excited
states were depicted as diradicals/zwitterions 2.%* Now we present
computational and ultrafast spectroscopic studies of phenylchlo-
rodiazirine and five ring-substituted analogues (3) that permit a more
precise representation of their excited states, as well as correlations
of the excited state lifetimes with solvent polarity and the electronic
properties of their aryl substituents.
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Ultrafast LFP (1., = 375 nm) of 3 (Y = H) in ACN affords a
broadly absorbing transient with A,,x = 625 nm (Figure 1) within
the 300 fs laser pulse.* The transient decays biexponentially with
7, =28 £ 0.3 psand 7, = 61.6 = 7.4 ps (cf. Figure S-1 in the
Supporting Information). In keeping with our previous report,” we
assign this transient to an excited state of 3 (Y = H) and suggest
that 7, represents intramolecular vibrational relaxation (IVR) of 3%
We do not assign the 625 nm transient to singlet carbene PhCCl,
notwithstanding that the carbene has a weak absorption in the 700
nm region,® because PhCCI (and ArCCl in general) decays much
more slowly (7 &~ 0.1—10 us)' than the transient of Figure 1.

RI-CC2/TZVP and TD B3LYP/6-311+G(d,p) calculations pre-
dict the Sy — S, vertical transition of 3 (Y = H) at 342 or 401 nm,
respectively,“ so that with A, of Sy measured at 369 nm and A
= 375 nm, we are confident that we are observing the S; state of
3. The RI-CC2 computational method has reliably reproduced other
electronic transitions.”® Similar transients are observed in CHCl;
(1, =46.2 £ 5.9 ps) and in CHX (7, = 13.3 &+ 3.1 ps) and are also
attributed to S; of 3 (Y = H); cf. Figures S-2 and S-3 in the
Supporting Information.

Five additional arylchlorodiazirines 3, with Y = p-MeO, p-Me,
p-Cl, m-Cl, and p-CF;, were prepared by hypochlorite oxidations®
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Figure 1. Transient spectra of 3* (Y = H) in ACN generated by ultrafast
LFP (A = 375 nm) with time windows of 0.3—300 ps.

Table 1. Lifetimes of Transient Absorptions of Arylchlorocarbenes?

Yin3 o,*? TACN TeHoB TCHX
p-MeO —0.78 760 £+ 22 644 + 78 132 £ 12
p-CH; —0.31 150 + 8.1 114 £8.3 258+ 1.6
p-H 0.00 61.6+74 462 +5.9 13.3 £ 3.1
p-Cl 0.11 50.0£5.9 40.6 £+ 8.1 8.0+0.8
m-Cl 0.37 22.1£29 16.5+4.0 47+0.2
p-CF; 0.53¢ 10.6 £0.7 69+0.8 254+02

“In ps; only the long components of the transients’ decays are
tabulated. © U; values are from March, J. Advanced Organic Chemistry,
4th ed.; New York: Wiley, 1992; p 280. © (TI,Jr is taken as identical to op.

of known arylamidines.® Ultrafast LFP data of these diazirines in
ACN, CHCl;, and CHX all give very similar ps transients in the
600—700 nm region; the complete series of spectra in ACN appears
in Figures S-4 to S-9 of the Supporting Information. By analogy,
we assign these transients to S; of 3; their lifetimes appear in Table
1. Decay curves at Ay, for all of the transients can be found in
Figures S-1—S-3 of the Supporting Information.

The data in Table 1 show that the S; lifetimes of 3 strongly
depend on solvent and the aryl substituent. S, lifetimes increase
with solvent polarity in the order CHX < CHCl; < ACN, and the
lifetimes are enhanced by electron-donating Y substituents regard-
less of solvent. In fact, we obtain excellent Hammett correlations
between 7, and 0,", with p = —1.27 (CHX), —1.37 (ACN), and
—1.43 (CHCl,); cf. Figure 2. These are among the very few
Hammett correlations of excited state lifetimes.'® We noted
previously that the lifetimes of 1% (Ar = Ph) increased with the
increasing resonance donating ability of X (F > Cl > Br).?

We can rationalize the observations with the aid of computational
studies. Figure 3 depicts the ground state (S¢) and the first excited
state (S;) geometries of 3 (Y = H), optimized at the RI-CC2/TZVP
level of theory.'' S, is not a diradical/zwitterionic species resem-
bling 22 but is instead predicted to be a covalent structure in which
the diazirine C—N bonds have lengthened from 1.468 A in S, to
1.546 —1.551 A in S;. We also observe bond length alternation in
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Figure 2. Hammett correlations for S; of 3: log 7 vs g,,*; see Table 1 for
7 and 0,,*. p = —137 (r = —0.998) for ACN (black), p = —1.43 (r =
—0.995) for CHCI; (blue), and p = —1.27 (r = —0.996) for CHX (red).

Figure 3. S, (left) and S, (right) of 3 (Y =H) optimized at the RI-CC2/
TZVP level of theory; bond lengths are in Angstroms.

Si: the C2—C3 and C5—C6 bonds shorten, while the other C—C
bonds lengthen, giving S; somewhat of a “quinoidal” appearance,
consistent with the charge distribution in S; (see below). The S;
state of the diazirine can either fragment to produce PhCCl and N,
or relax to the S, surface where it can either form the carbene or
thermally deactivate. The S; or vibrationally excited Sy states of 3
might also isomerize to the corresponding (unstable) diazo isomer
of 3.

The Mulliken charge distribution'" in S; of 3 (Y = H) indicates
that a positive charge resides on the para carbon (+0.04) and on
the diazirine carbon (+0.09), while a negative charge accumulates
on the nitrogens (—0.12, —0.13) and the ipso carbon (—0.04). Direct
interaction of the p-Y substituents of 3 with the positively charged
para carbon in S; accounts for the observed Hammett correlations
between 7, and ap+.'2 Similarly, resonance donation from X to the
positively charged diazirine carbon of 1* (Ar = Ph) accounts for
the previously observed dependence of 7, on X.?

The RI-CC2/TZVP computed dipole moments of the Sy and S,
states of 3 (R = H) are 2.28 and 4.78 D, respectively,'' which
explains why 7, of S; would be prolonged in polar solvents, as is
observed here, where 7, tracks solvent polarity (ACN > CHCl; >
CHX). Indeed, for any substituent Y, 7, is longest in ACN and
shortest in CHX (Table 1). However, solvent polarity has little effect
on the Hammett p values (see above). This could imply that the
main interaction of S; with solvent dipoles occurs at the negative

(and sterically unencumbered) diazirine nitrogen atoms, rather than
at the para carbon, where the positive charge is rather small and
the Y substituent might sterically hinder solvation.

In conclusion, experimental and computational studies suggest
that 375 nm excitation of arylchlorodiazirines 3 furnishes S; excited
states with lengthened C—N bonds, a positive charge at the para
and diazirine carbon atoms, and a negative charge at the nitrogen
atoms. These structures rationalize the observed solvent and
substituent effects on the excited state lifetimes.
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